
QUICK REFERENCE

www.itemis.com

This quick reference gives an overview of the building blocks a statechart
consists of and their semantics. It also shows the textual syntax used to express
behavior inside the graphical model. If you are new to YAKINDU Statechart Tools,
this is a good starting point to learn the main concepts.

2YAKINDU Statechart Tools – Quick reference

QUICK REFERENCE

Statechart elements overview

Statechart definition section

States and transitions

Choices

Composite states

Orthogonality

History nodes

Final state

Event-driven vs. cycle-based execution

3YAKINDU Statechart Tools – Quick reference

A statechart consists of a number of different elements. The following list gives an
overview of these elements in the order they are listed in the editor palette.

STATECHART ELEMENTS OVERVIEW

Description

Transitions connect states with each
other. Transition reactions define under
which conditions a transition is taken.

A state is the most basic building block of
a statechart. A state can define reactions
for when it gets entered or left.

A composite state groups a number
of substates. It can be used to express
state hierarchies.

An orthogonal state is used to express
concurrency.

A region is a container for states and
transitions. Regions can exist as top-
level elements or inside of a composite
or orthogonal state. Multiple regions
that coexist on the same level express
concurrency as in an orthogonal state.

Entry points mark the initial state of a region.
A region can have multiple named entry
points to specify different execution flows.

A shallow history remembers the last
active state inside a composite state.

A deep history remembers all nested
active state inside a composite state.

A final state denotes the end of the
execution flow.

Exit points are used to leave a composite
state and are the counterparts of entry points.

A choice node is used to model a
conditional path.

Synchronization nodes are used to
model forks and joins in combination
with orthogonal states.

Transition
Section: States and transitions

State
Section: States and transitions

Composite State
Section: Composite State

Orthogonal State
Section: Orthogonality

Region

Entry
Section: Composite State

Shallow History
Section: History Nodes

Deep History
Section: History Nodes

Final State
Chapter: Final State

Exit Note
Section: Composite State

Choice
Section: Choice

Synchronization
Section: Orthogonality

Statechart Element

https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_graphical_elements#sclang_final_state

4YAKINDU Statechart Tools – Quick reference

The definition section of the statechart defines which entities of the statechart, like
variables, events and operations, are accessible from the outside and which ones are
only used internally. For this, a definition section can declare an internal scope and
multiple interfaces.

A statechart interface declares the entities that are externally visible. These are the
elements by which the client code can interact with the statechart. A statechart can
declare multiple interfaces with different names. The unnamed interface is also called
the default interface.

STATECHART DEFINITION SECTION

STATECHART INTERFACES

Meaning

Incoming event, supposed to be raised
by the client code and processed by
the state machine to evaluate potential
state transitions.

Incoming event with payload of type
integer

Outgoing event, supposed to be raised
by the state machine and delivered to
the outside.

Interface Element Declaration

in event SwitchOn

in event Slider : integer

out event Finish

5YAKINDU Statechart Tools – Quick reference

Outgoing event with payload of type
string. Can be raised by a transition
or state reaction with raise Error :
"Some error message"

Variable, used to store some data. Can
be changed by the state machine and
by the client code.

Variable with initial value.

Variable marked as readonly to ensure
it is not changed by the client code.

Constant, used to store some
immutable data that is not changeable
by the client code or the state machine.
Constants must have an initial value.

Operation, connects a state machine to
the outside world by making external
behaviour accessible. Implementation
needs to be provided by the client
code.

out event Error : string

var brightness : integer

var brightness : integer = 3

const PI : real = 3.14

operation average
(a : real, b : real) : real

var readonly brightness : integer

Typed elements must have one of the following types: integer, real, boolean or string.

The internal scope declares the entities that are only used internally by the statechart
and hence are not visible to the outside.

INTERNAL SCOPE

Meaning

Internal event, can only be raised by the
state machine.

Internal variable, only visible by the
state machine, not by the client code.

Internal constant, only visible by the
state machine, not by the client code.

Internal Element Declaration

event Process

var brightness : integer

const PI : real = 3.14

6YAKINDU Statechart Tools – Quick reference

Operation, connects a state machine to
the outside world by making external
behaviour accessible. Implementation
needs to be provided by client code.

Statechart reaction, is evaluated on
each run cycle. Used to specify
reactions that are independent of the
current state.

operation average
(a : real, b : real) : real

every 500ms / raise Process

For more details on the definition section, consult the language reference.

States and transitions are the basic building blocks of a statechart. States and transiti-
ons are contained in regions.At each point of a statechart’s execution, there is at most
one active state per region.

States are connected by transitions. Transitions are directed, therefore states have in-
coming and outgoing transitions. All states must have at least one incoming transition.

STATES AND TRANSITIONS

TRANSITION REACTIONS

Transition reactions specify under which conditions a state transition is taken.
Reactions have the following syntax:

A state transition is taken when its trigger is raised and the guard condition is satisfied.
When the transition is taken, its effect actions are executed. Guards and effects are
optional.

trigger [guard] / effect

https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_definition_section#sclang_definition_section
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_graphical_elements#sclang_regions

7YAKINDU Statechart Tools – Quick reference

A transition reaction can specify the following triggers:

The reaction guard is optional. If specified, it needs to be a boolean expression.
Here are some examples of valid guard conditions:

TRIGGERS

GUARDS

Meaning

Event trigger, triggers when the event ev1
is raised. The used event needs to be
declared in the definition section.

Multiple event triggers, triggers when
one of the events ev1 or ev2 is raised.
The used events need to be declared
in the definition section.

Time trigger, trigger after given amount
of time.

Always trigger, triggers always. Can
be omitted when used with a guard.

Oncycle trigger, same as always trigger.

Else trigger, only valid on outgoing transiti-
ons of choice states to denote the default
transition if no other outgoing transition
can be taken.

Default trigger, same as else trigger.

Expression Kind

Logical AND, OR, NOT

Logical comparisons <, <=, >, >=

Logical equality or inequality

Trigger Syntax Examples

Guard Syntax Examples

ev1

[var1 && !var2]

[var1 > 0 && var1 <= 10]

[var1 == 10 && var2 != 17]

ev1, ev2

after 10s

always

oncycle

else

default

8YAKINDU Statechart Tools – Quick reference

Operation calls with boolean return type

Boolean variables or constants

[isOdd(var1)]

[var1]

The reaction effect is optional. If specified, the effect is executed when the transition
is taken. Multiple effects are separated by a semicolon. The last effect has no trailing
semicolon.

A state can also define reactions. The syntax is the same as for transitions. In addition
to the above mentioned examples, a state can also define entry and exit reactions.

EFFECTS

STATE REACTIONS

Meaning

Variable assignment

Operation call

Event raising

Event raising with payload

Conditional expression

Bit shifting

Meaning

Entry reaction, is executed when
the state is entered.

Exit reaction, is executed when
the state is exited.

Local reaction, is executed when no
outgoing transition can be taken.

Effect Syntax Examples

State Reaction Examples

/ var1+=10; var2=var1

entry / var1=10

/ calculate(var1, var2)

exit / var1=0

ev1 / var1+=1

/ raise ev1

/ raise ev2 : 42

/ var1 > 10 ? var1=0 : var1++

/ var1 << 8

9YAKINDU Statechart Tools – Quick reference

The statechart language comes with two built-in functions that can be used inside a
guard or effect expression:

When a state transition occurs, the specified reaction effects are executed in a defined
execution order:

1 All source state’s exit actions are executed

2 All transition actions are executed

3 All target state’s entry actions are executed

Consider the following simple example:

BUILT-IN FUNCTIONS

BASIC EXECUTION FLOW

Meaning

Returns the payload of an event. Note,
that the event needs to be raised when
valueOf is called.

Returns true if the given state is active,
otherwise false. This function is
especially useful in combination with
orthogonality.

Built-in Function

valueOf(even)

active(state)

10YAKINDU Statechart Tools – Quick reference

When StateA is entered, its entry reaction is executed first (a=1). When event ev1
is raised, the transition towards StateB is taken. As StateA is left, its exit reaction is
executed (b=1) before the transition reaction is executed (c=1), following by entering
StateB and executing its entry reaction (d=1). While StateB is active, each time the
event ev1 is raised, the state’s local reaction is executed (d++). Note, that this is a
different behavior compared to StateB having an outgoing transition pointing to itself,
as taking such a self-transition would also invoke the state’s exit and entry reactions.
Finally, when event ev2 is raised, StateB is left and its exit reaction is executed (e=1,
followed by the transition’s reaction (f=1), and StateA's entry reaction (a=1).

A choice is a pseudo state. It is used to model a conditional path. If a choice’s incoming
transition is taken, its outgoing transitions are immediately evaluated to decide which
path to take. To ensure there is always a valid path, a default transition can be defined
with the trigger else or default.

YAKINDU Statechart Tools allows to express state hierarchies by the means of
composite states and subdiagrams.

A composite state is a state that contains one or more other substates. It can be
used to group states into logical compounds and thus make the statechart more
comprehensible.

CHOICES

COMPOSITE STATES

11YAKINDU Statechart Tools – Quick reference

When a composite state is entered, its entry node denotes the substate to be activated.
A composite state can specify multiple entry nodes with unique names. Incoming tran-
sitions of the composite state can specify the desired entry node to take for entering
the composite state.

When a composite state is left, all active substates are also left. A composite state can
specify multiple exit nodes with unique names. Outgoing transitions of the composite
state can specify the relevant exit node for them.

The syntax for referencing entry or exit points in a transition reaction is the following:

Meaning

Enters the target composite state by the
entry point entry-point-1

Exit the composite state by this transition
if exit point entry-point-1 is active

Exit the composite state by this transition
if one of the exit points entry-point-1 or
entry-point-2 is active

Transition Reaction Examples

> entry-point-1

exit-point-1 >

exit-point-1 >
exit-point-2 >

The parent-first and child-first execution schemes define in which order a composite
state and its substates are processed:

• In the parent-first execution scheme, the composite state (parent)
 is processed first, before its substates are processed.
• In the child-first execution scheme, the active substate (child)
 is processed first, before its parent composite state is processed.

PARENT-FIRST VS. CHILD-FIRST EXECUTION

12YAKINDU Statechart Tools – Quick reference

Consider the previous example model. When state A1 is active and the event ev1
is raised, it depends on the execution scheme whether the transition to state B2
(child-first execution) or the one to state End1(parentfirst execution) is taken.

The execution scheme is specified by the @ParentFirstExecution resp.
@ChildFirstExecution annotation in the definition section. For more details, take
a look at the language reference.

YAKINDU Statechart Tools allows to specify orthogonal regions that are executed
virtually concurrently. Orthogonal regions can be modeled either on top level, or within a
composite state (or subdiagram). They allow to describe that the modeled system can
be in multiple states simultaneously.

Orthogonal regions are executed in a deterministic sequential order and not in parallel
as one might expect. The execution order is defined by the regions' priorities. These are
indicated in the top left corner of a region. The defined execution order plays a particu-
lar role when orthogonal regions raise and react to the same events. For more details,
see also chapter Raising and processing an event.

ORTHOGONALITY

https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_parent-first_and_child-first_execution#sclang_parent-first_and_child-first_execution
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_reactions#sclang_raising_and_processing_an_event

13YAKINDU Statechart Tools – Quick reference

Orthogonal regions can be defined on top level or within composite states. The seman-
tics explained above are the same. The example model above uses a synchronization
node to fork the execution flow into both orthogonal regions r1 and r2. After both
regions have executed their state transitions, the execution flow is joined again by a
synchronization node. A joining synchronization is only executed when all incoming
transitions can be taken within the same run-to-completion cycle. Read more about
synchronization nodes in the language reference.

A shallow history state is a pseudo state that is placed inside the region of a composite
state. It is used to remember the last active state inside a composite state. This makes
it possible to jump back to the remembered state instead of starting at the initial sub-
state again.

A deep history state is similar to a shallow history state, but more complex. With a deep
history state, the latest status of all nested states is remembered.

A final state denotes the end of the execution flow of a state machine or region. It can
have multiple incoming transitions but no outgoing ones. Each region may contain at
most one final state. In case of orthogonal regions, the execution flow stops when all
regions' final states have been reached.

SYNCHRONIZATIONS (FORKS AND JOINS)

HISTORY NODES

FINAL STATE

https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_graphical_elements#sclang_synchronizations

14YAKINDU Statechart Tools – Quick reference

The state machine can define one of two different execution schemes:

• In the cycle-based execution scheme, a run-to-completion step is executed
 periodically in regular time intervals.
• In the event-driven execution scheme, a run-to-completion step is executed
 each time an event is raised.

The execution scheme is selected in the definition section by either using the
@CycleBased or @EventDriven annotation. If nothing is specified, the cycle-based
execution scheme with a time interval of 200 milliseconds is used for simulation.
For a better understanding, see also this example, or the more elaborate explanation
in the language reference.

EVENT-DRIVEN VS. CYCLE-BASED EXECUTION

https://www.itemis.com/en/yakindu/state-machine/documentation/examples/org-yakindu-sct-examples-basic-eventdriven
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/codegen_general_concepts_of_the_state_machine_code#codegen_execution_schemes

www.itemis.com

